This document is also available in this non-normative format: diff to previous version
Copyright © 2010-2013 the Contributors to the JSON-LD 1.0 Specification, published by the RDF Working Group under the W3C Community Final Specification Agreement (FSA) . A human-readable summary is available.
JSON has proven to be a highly useful object serialization and messaging format. In an attempt to harmonize the representation of Linked Data in JSON, this specification outlines a common JSON representation format for expressing directed graphs; mixing both Linked Data and non-Linked Data in a single document.
This specification was published by the RDF Working Group . It is not a W3C Standard nor is it on the W3C Standards Track. Please note that under the W3C Community Final Specification Agreement (FSA) other conditions apply. Learn more about W3C Community and Business Groups .
This document has been under development for over 25 months in the JSON for Linking Data Community Group. The document has recently been transferred to the RDF Working Group for review, improvement, and publication. The specification has undergone significant development, review, and changes during the course of the last 25 months.
There are several independent interoperable implementations of this specification. There is a fairly complete test suite and a live JSON-LD editor that is capable of demonstrating the features described in this document. While development on implementations, the test suite and the live editor will continue, they are believed to be mature enough to be integrated into a non-production system at this point in time with the expectation that they could be used in a production system within the next year.
There are a number of ways that one may participate in the development of this specification:
This section is non-normative.
Linked Data is a technique for creating a network of inter-connected data across different documents and Web sites. In general, Linked Data has four properties: 1) it uses IRIs to name things; 2) it uses HTTP IRIs for those names; 3) the name IRIs , when dereferenced, provide more information about the name; and 4) the data expresses links to data on other Web sites. These properties allow data published on the Web to work much like Web pages do today. One can start at one piece of Linked Data, and follow the links to other pieces of data that are hosted on different sites across the Web.
JSON-LD is designed as a lightweight syntax to express Linked Data in JSON [ RFC4627 ]. It is primarily intended to be a way to use Linked Data in Web-based programming environments. It is also useful when building interoperable Web services and when storing Linked Data in JSON-based storage engines. Since JSON-LD is 100% compatible with JSON the large number of JSON parsers and libraries available today can be reused. Additionally to all the features JSON provides, JSON-LD introduces:
Developers that require any of the facilities listed above or need to serialize an RDF graph or dataset [ RDF-CONCEPTS ] in a JSON-based syntax will find JSON-LD of interest. The syntax is designed to not disturb already deployed systems running on JSON, but provide a smooth upgrade path from JSON to JSON-LD.
This section is non-normative.
This document is a detailed specification for a serialization of Linked Data in JSON. The document is primarily intended for the following audiences:
This specification does not describe the programming interfaces for the JSON-LD Syntax. The specification that describes the programming interfaces for JSON-LD documents is the JSON-LD Application Programming Interface [ JSON-LD-API ].
To understand the basics in this specification you must first be familiar with JSON, which is detailed in [ RFC4627 ].
This section is non-normative.
A number of design goals were established before the creation of this markup language:
@context
and
@id
)
to
use
the
basic
functionality
in
JSON-LD.
This document uses the following terms as defined in JSON [ RFC4627 ]. Refer to the JSON Grammar section in [ RFC4627 ] for formal definitions.
@context
where
the
value
is
null
explicitly
decouples
a
term
's
association
with
an
IRI
.
A
key-value
pair
in
the
body
of
a
JSON-LD
document
whose
value
is
null
has
the
same
meaning
as
if
the
key-value
pair
was
not
defined.
If
@value
,
@list
,
or
@set
is
set
to
null
in
expanded
form,
then
the
entire
JSON
object
is
ignored.
JSON-LD specifies a number of syntax tokens and keywords that are a core part of the language:
@context
@context
keyword
is
described
in
detail
in
the
section
titled
5.1
The
Context
.
@id
@value
@language
@type
@container
@list
@set
@index
@vocab
@type
with
a
common
prefix
IRI
.
This
keyword
is
described
in
section
5.2
IRIs
.
@graph
:
For the avoidance of doubt, all keys, keywords , and values in JSON-LD are case-sensitive.
This specification describes the conformance criteria for JSON-LD documents. This criteria is relevant to authors and authoring tool implementers.
A JSON-LD document complies with this specification if it follows the normative statements in section B. JSON-LD Grammar . JSON documents can be interpreted as JSON-LD by following the normative statements in section . For convenience, normative statements for documents are often phrased as statements on the properties of the document.
The key words must , must not , required , shall , shall not , should , should not , recommended , not recommended , may , and optional in this specification have the meaning defined in [ RFC2119 ].
JSON [ RFC4627 ] is a lightweight, language-independent data-interchange format. It is easy to parse and easy to generate. However, it is difficult to integrate JSON from different sources as the data has just local meaning. Furthermore, JSON has no built-in support for hyperlinks - a fundamental building block on the Web. Let's look at an example that we will be using for the rest of this section:
{ "name": "Manu Sporny", "homepage": "http://manu.sporny.org/", "image": "http://manu.sporny.org/images/manu.png" }
It's
obvious
for
humans
that
the
data
is
about
a
person
whose
name
is
"Manu
Sporny"
and
that
the
homepage
property
contains
the
URL
of
that
person's
homepage.
A
machine
doesn't
have
such
an
intuitive
understanding
and
sometimes,
even
for
humans,
it
is
difficult
to
resolve
ambiguities
in
such
representations.
This
problem
can
be
solved
by
using
unambiguous
identifiers
to
denote
the
different
concepts
instead
of
terms
such
as
"name",
"homepage",
etc.
Linked Data , and the Web in general, uses IRIs (Internationalized Resource Identifiers as described in [ RFC3987 ]) for unambiguous identification. The idea is to assign IRIs to something that may be of use to other developers and that it is useful to give them an unambiguous identifier. That is, it is useful for terms to expand to IRIs so that developers don't accidentally step on each other's terms. Furthermore, developers and machines are able to use this IRI (by using a web browser, for instance) to go to the term and get a definition of what the term means.
Leveraging the well-known schema.org vocabulary , the example above could be unambiguously expressed as follows:
{ "http://schema.org/name": "Manu Sporny", "http://schema.org/url": { "@id": "http://manu.sporny.org/" }, "http://schema.org/image": { "@id": "http://manu.sporny.org/images/manu.png" } }
In
the
example
above,
every
property
is
unambiguously
identified
by
an
IRI
and
all
values
representing
IRIs
are
explicitly
marked
as
such
by
the
@id
keyword
.
While
this
is
a
valid
JSON-LD
document
that
is
very
specific
about
its
data,
the
document
is
also
overly
verbose
and
difficult
to
work
with
for
human
developers.
To
address
this
issue,
JSON-LD
introduces
the
notion
of
a
context
as
described
in
the
next
section.
Simply speaking, a context is used to map terms , i.e., properties with associated values, to IRIs . Terms are case sensitive and any valid string that is not a reserved JSON-LD keyword can be used as a term .
For the sample document in the previous section, a context would look something like this:
{
"@context":
{
"name": "http://schema.org/name",
"image": {
"@id": "http://schema.org/image",
"@type": "@id"
},
"homepage": {
"@id": "http://schema.org/url",
"@type": "@id"
}
}
}
As the context above shows, the value of a term definition can either be a simple string, mapping the term to an IRI , or a JSON object .
When
a
JSON
object
is
associated
with
a
term,
it
is
called
an
expanded
term
definition
.
Expanded
term
definitions
may
be
used
to
associate
type
or
language
information
with
a
term.
The
example
above
specifies
that
the
values
of
image
and
homepage
terms
are
IRIs
.
They
also
allow
terms
to
be
used
for
index
maps
and
to
specify
whether
array
values
are
to
be
interpreted
as
sets
or
lists
.
Expanded
term
definitions
may
be
defined
using
absolute
or
compact
IRIs
as
keys,
which
is
mainly
used
to
associate
type
or
language
information
with
an
absolute
or
compact
IRI
.
Contexts
can
either
be
directly
embedded
into
the
document
or
be
referenced.
Assuming
the
context
document
in
the
previous
example
can
be
retrieved
at
http://json-ld.org/contexts/person.jsonld
,
it
can
be
referenced
by
adding
a
single
line
and
allows
a
JSON-LD
document
to
be
expressed
much
more
concisely
as
shown
in
the
example
below:
{
"@context": "http://json-ld.org/contexts/person.jsonld",
"name": "Manu Sporny",
"homepage": "http://manu.sporny.org/",
"image": "http://manu.sporny.org/images/manu.png"
}
The
referenced
context
not
only
specifies
how
the
terms
map
to
IRIs
in
the
Schema.org
vocabulary
but
also
specifies
that
the
values
of
the
homepage
and
image
property
can
be
interpreted
as
an
IRI
(e.g.
(
"@type":
"@id"
,
see
section
5.2
IRIs
for
more
details).
This
information
gives
the
data
global
context
and
allows
developers
to
re-use
each
other's
data
without
having
to
agree
to
how
their
data
will
interoperate
on
a
site-by-site
basis.
External
JSON-LD
context
documents
may
contain
extra
information
located
outside
of
the
@context
key,
such
as
documentation
about
the
terms
declared
in
the
document.
Information
contained
outside
of
the
@context
value
is
ignored
when
the
document
is
used
as
an
external
JSON-LD
context
document.
Contexts may also be specified in-line. This has the advantage that JSON-LD documents can be processed even in the absence of a connection to the Web.
{
"@context":
{
"name": "http://schema.org/name",
"image": {
"@id": "http://schema.org/image",
"@type": "@id"
},
"homepage": {
"@id": "http://schema.org/url",
"@type": "@id"
}
},
"name": "Manu Sporny",
"homepage": "http://manu.sporny.org/",
"image": "http://manu.sporny.org/images/manu.png"
}
IRIs (Internationalized Resource Identifiers [ RFC3987 ]) are fundamental to Linked Data as that is how most nodes and properties are identified. In JSON-LD, IRIs may be represented as an absolute IRI or a relative IRI . An absolute IRI is defined in [ RFC3987 ] as containing a scheme along with path and optional query and fragment segments. A relative IRI is an IRI that is relative to some other absolute IRI . In JSON-LD all relative IRIs are resolved relative to the base IRI associated with the document, which is typically the directory path containing the document.
IRIs can be expressed directly in the key position like so:
{
...
"http://schema.org/name": "Manu Sporny",
...
}
In
the
example
above,
the
key
http://schema.org/name
is
interpreted
as
an
absolute
IRI
because
it
contains
a
colon
(
:
)
and
the
"http"
prefix
does
not
exist
in
the
context.
Term-to- IRI expansion occurs if the key matches a term defined within the active context :
{ "@context": { "name": "http://schema.org/name" ... }, "name": "Manu Sporny", "status": "trollin'", ... }
JSON keys that do not expand to an absolute IRI are ignored, or removed in some cases, by the [ JSON-LD-API ]. However, JSON keys that do not include a mapping in the context are still considered valid expressions in JSON-LD documents—the keys just don't expand to unambiguous identifiers.
At
times,
all
properties
and
types
may
come
from
the
same
vocabulary.
JSON-LD's
@vocab
keyword
allows
an
author
to
set
a
common
prefix
to
be
used
for
all
properties
and
types
that
do
not
match
a
term
or
are
neither
a
compact
IRI
nor
an
absolute
IRI
(i.e.,
they
do
not
contain
a
colon).
{ "@context": { "@vocab": "http://schema.org/" }, "@type": "Person", "name": "Manu Sporny", }
An
IRI
is
generated
when
a
JSON
object
is
used
in
the
value
position
and
contains
an
@id
keyword:
{
...
"homepage": { "@id": "http://manu.sporny.org" }
...
}
Specifying
a
JSON
object
with
an
@id
key
is
used
to
identify
that
node
using
an
IRI
.
This
facility
may
also
be
used
to
link
to
another
node
object
using
a
mechanism
called
embedding
,
which
is
covered
in
the
section
titled
6.10
6.11
Embedding
.
If
type
coercion
rules
are
specified
in
the
@context
for
a
particular
term
or
property
IRI
,
an
IRI
is
generated:
{
"@context":
{
...
"homepage":
{
"@id": "http://schema.org/homepage",
"@type": "@id"
}
...
}
...
"homepage": "http://manu.sporny.org/",
...
}
In
the
example
above,
even
though
the
value
http://manu.sporny.org/
is
expressed
as
a
JSON
string
,
the
type
coercion
rules
will
transform
the
value
into
an
IRI
when
generating
the
JSON-LD
graph
.
See
6.3
Type
Coercion
for
more
details
about
this
feature.
In summary, IRIs can be expressed in a variety of different ways in JSON-LD:
@vocab
mapping
in
the
active
context,
JSON
object
keys
without
an
explicit
mapping
in
the
active
context
are
expanded
to
an
IRI
.
@id
or
@type
.
@type
key
that
is
set
to
a
value
of
@id
or
@vocab
.
To
be
able
to
externally
reference
nodes
in
a
graph
,
it
is
important
that
each
node
have
has
an
unambiguous
identifier.
IRIs
are
a
fundamental
concept
of
Linked
Data
,
and
nodes
should
have
a
de-referenceable
identifier
used
to
name
and
locate
them.
For
nodes
to
be
truly
linked,
de-referencing
the
identifier
should
result
in
a
representation
of
that
node
.
Associating
an
IRI
with
a
node
tells
an
application
that
it
can
fetch
the
resource
associated
with
the
IRI
and
get
back
a
description
of
the
node
.
JSON-LD documents may also contain descriptions of other nodes , so it is necessary to be able to uniquely identify each node so that the data is associated with the correct node in an unambiguous way.
A
node
is
identified
using
the
@id
keyword
:
{ "@context": { ... "homepage": { "@id": "http://schema.org/homepage", "@type": "@id" } }, "@id": "http://example.org/people#joebob", "homepage": "http://joebob.example.com/", ... }
The
example
above
contains
a
node
object
identified
by
the
IRI
http://example.org/people#joebob
.
The
type
of
a
particular
node
can
be
specified
using
the
@type
keyword
.
In
Linked
Data
,
types
are
uniquely
identified
with
an
IRI
.
{ ... "@id": "http://example.org/places#BrewEats", "@type": "http://schema.org/Restaurant", ... }
A node can be assigned more than one type by using an array :
{ ... "@id": "http://example.org/places#BrewEats", "@type": [ "http://schema.org/Restaurant", "http://schema.org/Brewery" ], ... }
The
value
of
a
@type
key
may
also
be
a
term
defined
in
the
active
context
:
{ "@context": { ... "Restaurant": "http://schema.org/Restaurant", "Brewery": "http://schema.org/Brewery" } "@id": "http://example.org/places#BrewEats", "@type": ["Restaurant", "Brewery"], ... }
JSON-LD has a number of features that provide functionality above and beyond the core functionality described above. The following section describes this advanced functionality in more detail.
A document on the Web that defines one or more IRIs for use as properties in Linked Data is called a vocabulary . Terms in Linked Data documents may draw from a number of different vocabularies s. At times, declaring every single term that a document uses can require the developer to declare tens, if not hundreds of potential vocabulary terms that are used across an application. This is a concern for at least two reasons: the first is the cognitive load on the developer of remembering all of the terms , and the second is the serialized size of the context if it is specified inline. In order to address these issues, the concept of a compact IRI is introduced.
A
compact
IRI
is
a
way
of
expressing
an
IRI
using
a
prefix
and
suffix
separated
by
a
colon
(
:
)
which
is
similar
to
the
CURIE
Syntax
in
[
RDFA-CORE
].
The
prefix
is
a
term
taken
from
the
active
context
and
is
a
short
string
identifying
a
particular
IRI
in
a
JSON-LD
document.
For
example,
the
prefix
foaf
may
be
used
as
a
short
hand
for
the
Friend-of-a-Friend
vocabulary,
which
is
identified
using
the
IRI
http://xmlns.com/foaf/0.1/
.
A
developer
may
append
any
of
the
FOAF
vocabulary
terms
to
the
end
of
the
prefix
to
specify
a
short-hand
version
of
the
absolute
IRI
for
the
vocabulary
term.
For
example,
foaf:name
would
be
expanded
out
to
the
IRI
http://xmlns.com/foaf/0.1/name
.
Instead
of
having
to
remember
and
type
out
the
entire
IRI
,
the
developer
can
instead
use
the
prefix
in
their
JSON-LD
markup.
Prefixes
are
expanded
when
the
form
of
the
value
is
a
compact
IRI
represented
as
a
prefix:suffix
combination,
and
the
prefix
matches
a
term
defined
within
the
active
context
:
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/" ... }, "foaf:name": "Dave Longley", ... }
foaf:name
above
will
automatically
expand
out
to
the
IRI
http://xmlns.com/foaf/0.1/name
.
Terms
are
interpreted
as
compact
IRIs
if
they
contain
at
least
one
colon
and
the
first
colon
is
not
followed
by
two
slashes
(
//
,
as
in
http://example.com
).
To
generate
the
full
IRI
,
the
value
is
first
split
into
a
prefix
and
suffix
at
the
first
occurrence
of
a
colon
(
:
).
If
the
active
context
contains
a
term
mapping
for
prefix
,
an
IRI
is
generated
by
prepending
the
mapped
prefix
to
the
(possibly
empty)
suffix
using
textual
concatenation.
If
no
prefix
mapping
is
defined,
the
value
is
interpreted
as
an
absolute
IRI
.
If
the
prefix
is
an
underscore
(
_
),
the
IRI
remains
unchanged.
Consider the following example:
{ "@context": { "dc": "http://purl.org/dc/elements/1.1/", "ex": "http://example.org/vocab#" }, "@id": "http://example.org/library", "@type": "ex:Library", "ex:contains": { "@id": "http://example.org/library/the-republic", "@type": "ex:Book", "dc:creator": "Plato", "dc:title": "The Republic", "ex:contains": { "@id": "http://example.org/library/the-republic#introduction", "@type": "ex:Chapter", "dc:description": "An introductory chapter on The Republic.", "dc:title": "The Introduction" } } }
In
this
example,
two
different
vocabularies
are
referred
to
using
prefixes.
Those
prefixes
are
then
used
as
type
and
property
values
using
the
compact
IRI
prefix:suffix
notation.
It's also possible to use compact IRIs within the context as shown in the following example:
{ "@context": { "xsd": "http://www.w3.org/2001/XMLSchema#", "foaf": "http://xmlns.com/foaf/0.1/", "foaf:homepage": { "@type": "@id" }, "picture": { "@id": "foaf:depiction", "@type": "@id" } }, "@id": "http://me.markus-lanthaler.com/", "@type": "foaf:Person", "foaf:name": "Markus Lanthaler", "foaf:homepage": "http://www.markus-lanthaler.com/", "picture": "http://twitter.com/account/profile_image/markuslanthaler" }
A value with an associated type, also known as a typed value , is indicated by associating a value with an IRI which indicates the value's type. Typed values may be expressed in JSON-LD in three ways:
@type
keyword
when
defining
a
term
within
a
@context
section.
The
first
example
uses
the
@type
keyword
to
associate
a
type
with
a
particular
term
in
the
@context
:
{
"@context":
{
"modified":
{
"@id": "http://purl.org/dc/terms/modified",
"@type": "http://www.w3.org/2001/XMLSchema#dateTime"
}
},
...
"@id": "http://example.com/docs/1",
"modified": "2010-05-29T14:17:39+02:00",
...
}
The
modified
key's
value
above
is
automatically
type
coerced
to
a
dateTime
value
because
of
the
information
specified
in
the
@context
.
A
JSON-LD
processor
will
interpret
the
markup
above
like
so:
Subject | Property | Value | Value Type |
---|---|---|---|
http://example.com/docs/1 | http://purl.org/dc/terms/modified | 2010-05-29T14:17:39+02:00 | http://www.w3.org/2001/XMLSchema#dateTime |
The second example uses the expanded form of setting the type information in the body of a JSON-LD document:
{
"@context":
{
"modified":
{
"@id": "http://purl.org/dc/terms/modified"
}
},
...
"modified":
{
"@value": "2010-05-29T14:17:39+02:00",
"@type": "http://www.w3.org/2001/XMLSchema#dateTime"
}
...
}
Both
examples
above
would
generate
the
value
2010-05-29T14:17:39+02:00
with
the
type
http://www.w3.org/2001/XMLSchema#dateTime
.
Note
that
it
is
also
possible
to
use
a
term
or
a
compact
IRI
to
express
the
value
of
a
type.
The
@type
keyword
is
also
used
to
associate
a
type
with
a
node
.
The
concept
of
a
node
type
and
a
value
type
are
different.
Generally speaking, a node type specifies the type of thing that is being described, like a person, place, event, or web page. A value type specifies the unit of measurement for a particular value, such as a date, meter, or light year.
{ ... "@id": "http://example.org/posts#TripToWestVirginia", "@type": "http://schema.org/BlogPosting", <--- This is a node type "modified": { "@value": "2010-05-29T14:17:39+02:00", "@type": "http://www.w3.org/2001/XMLSchema#dateTime" <--- This is a value type } ... }
The
first
use
of
@type
associates
a
node
type
(
http://schema.org/BlogPosting
)
with
the
node
,
which
is
expressed
using
the
@id
keyword
.
The
second
use
of
@type
associates
a
value
type
(
http://www.w3.org/2001/XMLSchema#dateTime
)
with
the
value
expressed
using
the
@value
keyword
.
As
a
general
rule,
when
@value
and
@type
are
used
in
the
same
JSON
object
,
the
@type
keyword
is
expressing
a
value
type
.
Otherwise,
the
@type
keyword
is
expressing
a
node
type
.
The
markup
above
expresses
the
following
data:
Subject | Property | Value | Value Type |
---|---|---|---|
http://example.org/posts#TripToWestVirginia | http://www.w3.org/1999/02/22-rdf-syntax-ns#type | http://schema.org/BlogPosting | - |
http://example.org/posts#TripToWestVirginia | http://purl.org/dc/terms/modified | 2010-05-29T14:17:39+02:00 | http://www.w3.org/2001/XMLSchema#dateTime |
JSON-LD supports the coercion of values to particular data types. Type coercion allows someone deploying JSON-LD to coerce the incoming or outgoing values to the proper data type based on a mapping of data type IRIs to terms . Using type coercion, value representation is preserved without requiring the data type to be specified with each piece of data.
Type
coercion
is
specified
within
an
expanded
term
definition
using
the
@type
key.
The
value
of
this
key
expands
to
an
IRI
.
Alternatively,
the
keyword
keywords
@id
or
@vocab
may
be
used
as
value
to
indicate
that
within
the
body
of
a
JSON-LD
document,
a
string
value
of
a
term
coerced
to
@id
or
@vocab
is
to
be
interpreted
as
an
IRI
.
The
difference
between
@id
and
@vocab
is
how
values
are
expanded
to
absolute
IRIs
.
@vocab
first
tries
to
expand
the
value
by
interpreting
it
as
term
.
If
no
matching
term
is
found
in
the
active
context
,
it
tries
to
expand
it
as
compact
IRI
or
absolute
IRI
if
there's
a
colon
in
the
value;
otherwise,
it
will
expand
the
value
using
the
active
context's
vocabulary
mapping,
if
present,
or
by
interpreting
it
as
relative
IRI
.
Values
coerced
to
@id
in
contrast
are
expanded
as
compact
IRI
or
absolute
IRI
if
a
colon
is
present;
otherwise,
they
are
interpreted
as
relative
IRI
.
Terms
or
compact
IRIs
used
as
the
value
of
a
@type
key
may
be
defined
within
the
same
context.
This
means
that
one
may
specify
a
term
like
xsd
and
then
use
xsd:integer
within
the
same
context
definition.
The example below demonstrates how a JSON-LD author can coerce values to typed values , IRIs, and lists.
{ "@context": { "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "http://xmlns.com/foaf/0.1/name", "age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id", "@container": "@list" } }, "@id": "http://example.com/people#john", "name": "John Smith", "age": "41", "homepage": [ "http://personal.example.org/", "http://work.example.com/jsmith/" ] }
The
markup
shown
above
would
generate
the
following
data.
The
data
has
no
inherent
order
except
for
the
values
of
the
http://schema.org/homepage
property
which
represent
an
ordered
list.
Subject | Property | Value | Value Type |
---|---|---|---|
http://example.com/people#john | http://xmlns.com/foaf/0.1/name | John Smith | |
http://example.com/people#john | http://xmlns.com/foaf/0.1/age | 41 | http://www.w3.org/2001/XMLSchema#integer |
http://example.com/people#john | http://xmlns.com/foaf/0.1/homepage | http://personal.example.org/ | |
http://work.example.com/jsmith/ |
Terms may also be defined using absolute IRIs or compact IRIs . This allows coercion rules to be applied to keys which are not represented as a simple term . For example:
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "foaf:age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "http://xmlns.com/foaf/0.1/homepage": { "@type": "@id" } }, "foaf:name": "John Smith", "foaf:age": "41", "http://xmlns.com/foaf/0.1/homepage": [ "http://personal.example.org/", "http://work.example.com/jsmith/" ] }
In
this
case
the
@id
definition
in
the
term
definition
is
optional,
but
if
it
does
exist,
the
compact
IRI
or
IRI
is
treated
as
a
term
(not
a
prefix:suffix
construct)
so
that
the
actual
definition
of
a
prefix
becomes
unnecessary.
Type
coercion
is
performed
using
the
unexpanded
value
of
the
key
if
there
is
an
exact
match
for
the
key
in
the
active
context
.
Keys
in
the
context
are
treated
as
terms
for
the
purpose
of
expansion
and
value
coercion.
At
times,
this
may
result
in
multiple
representations
for
the
same
expanded
IRI
.
For
example,
one
could
specify
that
dog
and
cat
both
expanded
to
http://example.com/vocab#animal
.
Doing
this
could
be
useful
for
establishing
different
type
coercion
or
language
specification
rules.
It
also
allows
a
compact
IRI
(or
even
an
absolute
IRI
)
to
be
defined
as
something
else
entirely.
For
example,
one
could
specify
that
the
term
http://example.org/zoo
should
expand
to
http://example.org/river
,
but
this
usage
is
discouraged
because
it
would
lead
to
a
great
deal
of
confusion
among
developers
attempting
to
understand
the
JSON-LD
document.
Section 5.1 The Context introduced the basics of what makes JSON-LD work. This section expands on the basic principles of the context and demonstrates how more advanced use cases can be achieved using JSON-LD.
In general, contexts may be used at any time a JSON object is defined. The only time that one cannot express a context is inside a context definition itself. For example, a JSON-LD document may use more than one context at different points in a document:
[ { "@context": "http://example.org/contexts/person.jsonld", "name": "Manu Sporny", "homepage": "http://manu.sporny.org/", "depiction": "http://twitter.com/account/profile_image/manusporny" }, { "@context": "http://example.org/contexts/place.jsonld", "name": "The Empire State Building", "description": "The Empire State Building is a 102-story landmark in New York City.", "geo": { "latitude": "40.75", "longitude": "73.98" } } ]
Duplicate context terms are overridden using a last-defined-wins mechanism.
{ "@context": { "name": "http://example.com/person#name", "details": "http://example.com/person#details" }, "name": "Markus Lanthaler", ... "details": { "@context": { "name": "http://example.com/organization#name" }, "name": "Graz University of Technology" } }
In
the
example
above,
the
name
term
is
overridden
in
the
more
deeply
nested
details
structure.
Note
that
this
is
rarely
a
good
authoring
practice
and
is
typically
used
when
working
with
legacy
applications
that
depend
on
a
specific
structure
of
the
JSON
object
.
If
a
term
is
redefined
within
a
context,
all
previous
rules
associated
with
the
previous
definition
are
removed.
If
a
term
is
redefined
to
null
,
the
term
is
effectively
removed
from
the
list
of
terms
defined
in
the
active
context
.
Multiple
contexts
may
be
combined
using
an
array
,
which
is
processed
in
order.
The
set
of
contexts
defined
within
a
specific
JSON
object
are
referred
to
as
local
contexts
.
The
active
context
refers
to
the
accumulation
of
local
contexts
that
are
in
scope
at
a
specific
point
within
the
document.
Setting
a
local
context
to
null
effectively
resets
the
active
context
to
an
empty
context.
The
following
example
specifies
an
external
context
and
then
layers
an
embedded
context
on
top
of
the
external
context:
{ "@context": [ "http://json-ld.org/contexts/person.jsonld", { "pic": "http://xmlns.com/foaf/0.1/depiction" } ], "name": "Manu Sporny", "homepage": "http://manu.sporny.org/", "pic": "http://twitter.com/account/profile_image/manusporny" }
It is a best practice to put the context definition at the top of the JSON-LD document.
While
it
is
possible
to
define
a
compact
IRI
,
or
an
absolute
IRI
to
expand
to
some
other
unrelated
IRI
(for
example,
foaf:name
expanding
to
http://example.org/unrelated#species
),
such
usage
is
strongly
discouraged.
Note
To
avoid
forward-compatibility
issues,
terms
starting
with
an
@
character
are
to
be
avoided
as
they
might
be
used
as
keywords
in
future
versions
of
JSON-LD.
Furthermore,
the
use
of
empty
terms
(
""
)
is
discouraged
as
not
all
programming
languages
are
able
to
handle
empty
property
names.
Ordinary
JSON
documents
can
be
interpreted
as
JSON-LD
by
referencing
a
JSON-LD
context
document
in
an
HTTP
Link
Header.
Doing
so
allows
JSON
to
be
unambiguously
machine-readable
without
requiring
developers
to
drastically
change
their
markup
and
provides
an
upgrade
path
for
existing
infrastructure
without
breaking
existing
clients
that
rely
on
the
application/json
media
type.
In
order
to
use
an
external
context
with
an
ordinary
JSON
document,
an
author
must
specify
an
IRI
to
a
valid
JSON-LD
document
in
an
HTTP
Link
Header
[
RFC5988
]
using
the
http://www.w3.org/ns/json-ld#context
link
relation.
The
referenced
document
must
have
a
top-level
JSON
object
.
The
@context
subtree
within
that
object
is
added
to
the
top-level
JSON
object
of
the
referencing
document.
If
an
array
is
at
the
top-level
of
the
referencing
document
and
its
items
are
JSON
objects
,
the
@context
subtree
is
added
to
all
array
items.
All
extra
information
located
outside
of
the
@context
subtree
in
the
referenced
document
must
be
discarded.
Effectively
this
means
that
the
active
context
is
initialized
with
the
referenced
external
context
.
The following example demonstrates the use of an external context with an ordinary JSON document:
GET /ordinary-json-document.json HTTP/1.1 Host: example.com Accept: application/ld+json,application/json,*/*;q=0.1 ==================================== HTTP/1.0 200 OK ... Content-Type: application/json Link: <http://json-ld.org/contexts/person.jsonld>; rel="http://www.w3.org/ns/json-ld#context"; type="application/ld+json" { "name": "Markus Lanthaler", "homepage": "http://www.markus-lanthaler.com/", "image": "http://twitter.com/account/profile_image/markuslanthaler" }
Please
note
that
JSON-LD
documents
served
with
the
application/ld+json
media
type
must
have
all
context
information,
including
references
to
external
contexts,
within
the
body
of
the
document.
Contexts
linked
via
a
http://www.w3.org/ns/json-ld#context
HTTP
Link
Header
must
be
ignored
for
such
documents.
At
times,
it
is
important
to
annotate
a
string
with
its
language.
In
JSON-LD
this
is
possible
in
a
variety
of
ways.
First,
it
is
possible
to
define
a
default
language
for
a
JSON-LD
document
by
setting
the
@language
key
in
the
context
:
{ "@context": { ... "@language": "ja" }, "name": "花澄", "occupation": "科学者" }
The
example
above
would
associate
the
ja
language
code
with
the
two
strings
花澄
and
科学者
.
Languages
codes
are
defined
in
[
BCP47
].
To
clear
the
default
language
for
a
subtree,
@language
can
be
set
to
null
in
a
local
context
as
follows:
{
"@context": {
...
"@language": "ja"
},
"name": "花澄",
"details": {
"@context": {
"@language": null
},
"occupation": "Ninja"
}
}
Second, it is possible to associate a language with a specific term using an expanded term definition :
{ "@context": { ... "ex": "http://example.com/vocab/", "@language": "ja", "name": { "@id": "ex:name", "@language": null }, "occupation": { "@id": "ex:occupation" }, "occupation_en": { "@id": "ex:occupation", "@language": "en" }, "occupation_cs": { "@id": "ex:occupation", "@language": "cs" } }, "name": "Yagyū Muneyoshi", "occupation": "忍者", "occupation_en": "Ninja", "occupation_cs": "Nindža", ... }
The
example
above
would
associate
忍者
with
the
specified
default
language
code
ja
,
Ninja
with
the
language
code
en
,
and
Nindža
with
the
language
code
cs
.
The
value
of
name
,
Yagyū
Muneyoshi
wouldn't
be
associated
with
any
language
code
since
@language
was
reset
to
null
in
the
expanded
term
definition
.
Language associations can only be applied to plain literal strings . Typed values or values that are subject to 6.3 Type Coercion cannot be language tagged.
Just as in the example above, systems often need to express the value of a property in multiple languages. Typically, such systems also try to ensure that developers have a programmatically easy way to navigate the data structures for the language-specific data. In this case, language maps may be utilized.
{ "@context": { ... "occupation": { "@id": "ex:occupation", "@container": "@language" } }, "name": "Yagyū Muneyoshi", "occupation": { "ja": "忍者", "en": "Ninja", "cs": "Nindža" } ... }
The
example
above
expresses
exactly
the
same
information
as
the
previous
example
but
consolidates
all
values
in
a
single
property.
To
access
the
value
in
a
specific
language
in
a
programming
language
supporting
dot-notation
accessors
for
object
properties,
a
developer
may
use
the
property.language
pattern.
For
example,
to
access
the
occupation
in
English,
a
developer
would
use
the
following
code
snippet:
obj.occupation.en
.
Third, it is possible to override the default language by using an expanded value :
{
"@context": {
...
"@language": "ja"
},
"name": "花澄",
"occupation": {
"@value": "Scientist",
"@language": "en"
}
}
This
makes
it
possible
to
specify
a
plain
string
by
omitting
the
@language
tag
or
setting
it
to
null
when
expressing
it
using
an
expanded
value
:
{
"@context": {
...
"@language": "ja"
},
"name": {
"@value": "Frank"
},
"occupation": {
"@value": "Ninja",
"@language": "en"
},
"speciality": "手裏剣"
}
If
@vocab
is
used
but
certain
keys
in
an
object
should
not
be
expanded
using
the
vocabulary
IRI
,
a
term
can
be
explicitly
set
to
null
in
the
context
.
For
instance,
in
the
example
below
the
databaseId
member
would
be
ignored
by
a
JSON-LD
processor.
{ "@context": { "@vocab": "http://schema.org/", "databaseId": null }, "name": "Gregg Kellogg", "databaseId": "23987520" }
At times, an author may find that they need to express the same value for multiple properties. The simplest approach to accomplish this goal would be to do the following:
{ "@context": { "title1": "http://purl.org/dc/terms/title", "title2": "http://schema.org/name", "title3": "http://www.w3.org/2000/01/rdf-schema#label" }, "@id": "http://example.com/book", "title1": "The Count of Monte Cristo", "title2": "The Count of Monte Cristo", "title3": "The Count of Monte Cristo" }
Unfortunately, the approach above produces redundant data and would become a publishing burden for large data sets. In these situations, the author may use a property generator to express a term that maps to multiple properties in the JSON-LD graph . This method can be accomplished by using the following markup pattern:
{ "@context": { "title": { "@id": [ "http://purl.org/dc/terms/title", "http://schema.org/name", "http://www.w3.org/2000/01/rdf-schema#label" ] } }, "@id": "http://example.com/book", "title": "The Count of Monte Cristo" }
While
the
term
above
is
only
used
once
outside
of
the
@context
,
the
document
above
will
be
interpreted
like
so:
Subject | Property | Value |
---|---|---|
http://example.com/book | http://purl.org/dc/terms/title | The Count of Monte Cristo |
http://example.com/book | http://schema.org/name | The Count of Monte Cristo |
http://example.com/book | http://www.w3.org/2000/01/rdf-schema#label | The Count of Monte Cristo |
In
general,
normal
IRI
expansion
rules
apply
anywhere
an
IRI
is
expected
(see
5.2
IRIs
).
Within
a
context
definition,
this
can
mean
that
terms
defined
within
the
context
may
also
be
used
within
that
context
as
long
as
there
are
no
circular
dependencies.
For
example,
it
is
common
to
use
the
xsd
namespace
when
defining
typed
value
s:
{ "@context": { "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "http://xmlns.com/foaf/0.1/name", "age": { "@id": "http://xmlns.com/foaf/0.1/age", "@type": "xsd:integer" }, "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } }, ... }
In
this
example,
the
xsd
term
is
defined
and
used
as
a
prefix
for
the
@type
coercion
of
the
age
property.
Terms may also be used when defining the IRI of another term :
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "foaf:name", "age": { "@id": "foaf:age", "@type": "xsd:integer" }, "homepage": { "@id": "foaf:homepage", "@type": "@id" } }, ... }
Compact IRIs and IRIs may be used on the left-hand side of a term definition.
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/", "xsd": "http://www.w3.org/2001/XMLSchema#", "name": "foaf:name", "foaf:age": { "@type": "xsd:integer" }, "foaf:homepage": { "@type": "@id" } }, ... }
In
this
example,
the
compact
IRI
form
is
used
in
two
different
ways.
In
the
first
approach,
foaf:age
declares
both
the
IRI
for
the
term
(using
short-form)
as
well
as
the
@type
associated
with
the
term
.
In
the
second
approach,
only
the
@type
associated
with
the
term
is
specified.
The
full
IRI
for
foaf:homepage
is
determined
by
looking
up
the
foaf
prefix
in
the
context
.
Absolute IRIs may also be used in the key position in a context :
{
"@context":
{
"foaf": "http://xmlns.com/foaf/0.1/",
"xsd": "http://www.w3.org/2001/XMLSchema#",
"name": "foaf:name",
"foaf:age":
{
"@id": "foaf:age",
"@type": "xsd:integer"
},
"http://xmlns.com/foaf/0.1/homepage":
{
"@type": "@id"
}
},
...
}
In
order
for
the
absolute
IRI
to
match
above,
the
absolute
IRI
needs
to
be
used
in
the
JSON-LD
document
.
Also
note
that
foaf:homepage
will
not
use
the
{
"@type":
"@id"
}
declaration
because
foaf:homepage
is
not
the
same
as
http://xmlns.com/foaf/0.1/homepage
.
That
is,
terms
are
looked
up
in
a
context
using
direct
string
comparison
before
the
prefix
lookup
mechanism
is
applied.
While
it
is
possible
to
define
a
compact
IRI
,
or
an
absolute
IRI
to
expand
to
some
other
unrelated
IRI
(for
example,
foaf:name
expanding
to
http://example.org/unrelated#species
),
such
usage
is
strongly
discouraged.
The only exception for using terms in the context is that circular definitions are not allowed. That is, a definition of term1 cannot depend on the definition of term2 if term2 also depends on term1 . For example, the following context definition is illegal:
{
"@context":
{
"term1": "term2:foo",
"term2": "term1:bar"
},
...
}
A JSON-LD author can express multiple values in a compact way by using arrays . Since graphs do not describe ordering for links between nodes, arrays in JSON-LD do not provide an ordering of the contained elements by default. This is exactly the opposite from regular JSON arrays, which are ordered by default. For example, consider the following simple document:
{
...
"@id": "http://example.org/people#joebob",
"nick": [ "joe", "bob", "JB" ],
...
}
The markup shown above would result in the following data being generated, each relating the node to an individual value, with no inherent order:
Subject | Property | Value |
---|---|---|
http://example.org/people#joebob | http://xmlns.com/foaf/0.1/nick | joe |
http://example.org/people#joebob | http://xmlns.com/foaf/0.1/nick | bob |
http://example.org/people#joebob | http://xmlns.com/foaf/0.1/nick | JB |
Multiple values may also be expressed using the expanded form:
{
"@id": "http://example.org/articles/8",
"dc:title":
[
{
"@value": "Das Kapital",
"@language": "de"
},
{
"@value": "Capital",
"@language": "en"
}
]
}
The markup shown above would generate the following data, again with no inherent order:
Subject | Property | Value | Language |
---|---|---|---|
http://example.org/articles/8 | http://purl.org/dc/terms/title | Das Kapital | de |
http://example.org/articles/8 | http://purl.org/dc/terms/title | Capital | en |
As
the
notion
of
ordered
collections
is
rather
important
in
data
modeling,
it
is
useful
to
have
specific
language
support.
In
JSON-LD,
a
list
may
be
represented
using
the
@list
keyword
as
follows:
{
...
"@id": "http://example.org/people#joebob",
"foaf:nick":
{
"@list": [ "joe", "bob", "jaybee" ]
},
...
}
This
describes
the
use
of
this
array
as
being
ordered,
and
order
is
maintained
when
processing
a
document.
If
every
use
of
a
given
multi-valued
property
is
a
list,
this
may
be
abbreviated
by
setting
@container
to
@list
in
the
context
:
{ "@context": { ... "nick": { "@id": "http://xmlns.com/foaf/0.1/nick", "@container": "@list" } }, ... "@id": "http://example.org/people#joebob", "nick": [ "joe", "bob", "jaybee" ], ... }
List of lists are not allowed in this version of JSON-LD. This decision was made due to the extreme amount of added complexity when processing lists of lists.
While
@list
is
used
to
describe
ordered
sets
lists
,
the
@set
keyword
is
used
to
describe
unordered
sets
.
The
use
of
@set
in
the
body
of
a
JSON-LD
document
is
optimized
away
when
processing
the
document,
as
it
is
just
syntactic
sugar.
However,
@set
is
helpful
when
used
within
the
context
of
a
document.
Values
of
terms
associated
with
a
@set
or
@list
container
are
always
represented
in
the
form
of
an
array
,
even
if
there
is
just
a
single
value
that
would
otherwise
be
optimized
to
a
non-array
form
in
compact
form
(see
6.15
6.16
Compact
Document
Form
).
This
makes
post-processing
of
JSON-LD
documents
easier
as
the
data
is
always
in
array
form,
even
if
the
array
only
contains
a
single
value.
The
use
of
@container
in
the
body
of
a
JSON-LD
document
has
no
meaning
and
is
not
allowed
by
the
JSON-LD
grammar
(see
B.
JSON-LD
Grammar
).
Embedding is a JSON-LD feature that allows an author to use node objects as property values. This is a commonly used mechanism for creating a parent-child relationship between two nodes .
The example shows two nodes related by a property from the first node:
{ ... "name": "Manu Sporny", "knows": { "@type": "Person", "name": "Gregg Kellogg", } ... }
A node object , like the one used above, may be used in any value position in the body of a JSON-LD document.
At
times,
it
is
necessary
to
make
statements
about
a
JSON-LD
graph
itself,
rather
than
just
a
single
node
.
This
can
be
done
by
grouping
a
set
of
nodes
using
the
@graph
keyword
.
A
developer
may
also
name
data
expressed
using
the
@graph
keyword
by
pairing
it
with
an
@id
keyword
as
shown
in
the
following
example:
{
"@context": {
"generatedAt": "http://www.w3.org/ns/prov#generatedAtTime",
"Person": "http://xmlns.com/foaf/0.1/Person",
"name": "http://xmlns.com/foaf/0.1/name",
"knows": "http://xmlns.com/foaf/0.1/knows",
"xsd": "http://www.w3.org/2001/XMLSchema#"
},
"@id": "http://example.org/graphs/73",
"generatedAt": { "@value": "2012-04-09", "@type": "xsd:date" },
"@graph":
[
{
"@id": "http://manu.sporny.org/i/public",
"@type": "Person",
"name": "Manu Sporny",
"knows": "http://greggkellogg.net/foaf#me"
},
{
"@id": "http://greggkellogg.net/foaf#me",
"@type": "Person",
"name": "Gregg Kellogg",
"knows": "http://manu.sporny.org/i/public"
}
]
}
The
example
above
expresses
a
named
JSON-LD
graph
that
is
identified
by
the
IRI
http://example.org/graphs/73
.
That
graph
is
composed
of
the
statements
about
Manu
and
Gregg.
Metadata
about
the
graph
itself
is
also
expressed
via
the
generatedAt
property,
which
specifies
when
the
graph
was
generated.
An
alternative
view
of
the
information
above
is
represented
in
table
form
below:
Graph | Subject | Property | Value | Value Type |
---|---|---|---|---|
http://example.org/graphs/73 | http://example.org/graphs/73 | http://www.w3.org/ns/prov#generatedAtTime | 2012-04-09 | http://www.w3.org/2001/XMLSchema#date |
http://example.org/graphs/73 | http://manu.sporny.org/i/public | http://www.w3.org/2001/XMLSchema#type | http://xmlns.com/foaf/0.1/Person | |
http://example.org/graphs/73 | http://manu.sporny.org/i/public | http://xmlns.com/foaf/0.1/name | Manu Sporny | |
http://example.org/graphs/73 | http://manu.sporny.org/i/public | http://xmlns.com/foaf/0.1/knows | http://greggkellogg.net/foaf#me | |
http://example.org/graphs/73 | http://greggkellogg.net/foaf#me | http://www.w3.org/2001/XMLSchema#type | http://xmlns.com/foaf/0.1/Person | |
http://example.org/graphs/73 | http://greggkellogg.net/foaf#me | http://xmlns.com/foaf/0.1/name | Gregg Kellogg | |
http://example.org/graphs/73 | http://greggkellogg.net/foaf#me | http://xmlns.com/foaf/0.1/knows | http://manu.sporny.org/i/public |
When
@graph
is
used
in
a
JSON-LD
document's
top-level
structure
is
an
object
which
has
that
contains
no
other
properties
than
@graph
and
optionally
@context
(properties
that
are
not
mapped
to
an
IRI
or
a
keyword
it
are
ignored),
@graph
is
considered
to
express
the
otherwise
implicit
default
graph.
graph
.
This
mechanism
can
be
useful
when
a
number
of
nodes
do
not
directly
relate
to
one
another
through
a
property
or
where
embedding
exist
at
the
document's
top
level
that
share
the
same
context
.
The
@graph
keyword
collects
such
nodes
in
an
array
is
not
desirable
to
and
allows
the
application.
For
example:
use
of
a
shared
context.
{
"@context": ...,
"@graph":
[
{
"@id": "http://manu.sporny.org/i/public",
"@type": "foaf:Person",
"name": "Manu Sporny",
"knows": "http://greggkellogg.net/foaf#me"
},
{
"@id": "http://greggkellogg.net/foaf#me",
"@type": "foaf:Person",
"name": "Gregg Kellogg",
"knows": "http://manu.sporny.org/i/public"
}
]
}
In
this
case,
embedding
doesn't
work
as
each
node
object
references
the
other.
Using
the
@graph
keyword
allows
multiple
nodes
to
be
defined
within
an
array
,
and
allows
the
use
of
a
shared
context
.
This
is
equivalent
to
using
multiple
node
objects
in
array
and
defining
the
@context
within
each
node
object
:
[ { "@context": ..., "@id": "http://manu.sporny.org/i/public", "@type": "foaf:Person", "name": "Manu Sporny", "knows": "http://greggkellogg.net/foaf#me" }, { "@context": ..., "@id": "http://greggkellogg.net/foaf#me", "@type": "foaf:Person", "name": "Gregg Kellogg", "knows": "http://manu.sporny.org/i/public" } ]
At
times,
it
becomes
necessary
to
be
able
to
express
information
without
being
able
to
uniquely
identify
the
node
.
This
type
of
node
is
called
a
blank
node
(see
Section
3.4:
Blank
Nodes
of
[
RDF-CONCEPTS
]).
In
JSON-LD,
blank
node
identifiers
are
automatically
created
if
an
IRI
is
not
specified
using
the
@id
keyword
.
However,
authors
may
provide
identifiers
for
blank
nodes
by
using
the
special
_
(underscore)
prefix
.
This
allows
one
to
reference
the
node
locally
within
the
document,
but
makes
it
impossible
to
reference
the
node
from
an
external
document.
The
blank
node
identifier
is
scoped
to
the
document
in
which
it
is
used.
{
...
"@id": "_:foo",
...
}
The
example
above
would
set
the
node
to
_:foo
,
which
can
then
be
used
elsewhere
in
the
JSON-LD
document
to
refer
back
to
the
blank
node
.
If
a
developer
finds
that
they
refer
to
the
blank
node
more
than
once,
they
should
consider
naming
the
node
using
a
dereferenceable
IRI
so
that
it
can
also
be
referenced
from
other
documents.
Each
of
the
JSON-LD
keywords
,
except
for
@context
,
may
be
aliased
to
application-specific
keywords.
This
feature
allows
legacy
JSON
content
to
be
utilized
by
JSON-LD
by
re-using
JSON
keys
that
already
exist
in
legacy
documents.
This
feature
also
allows
developers
to
design
domain-specific
implementations
using
only
the
JSON-LD
context
.
{ "@context": { "url": "@id", "a": "@type", "name": "http://xmlns.com/foaf/0.1/name" }, "url": "http://example.com/about#gregg", "a": "http://xmlns.com/foaf/0.1/Person", "name": "Gregg Kellogg" }
In
the
example
above,
the
@id
and
@type
keywords
have
been
given
the
aliases
url
and
a
,
respectively.
Since
keywords
cannot
be
redefined,
they
can
also
not
be
aliased
to
other
keywords.
Every
statement
in
the
context
having
a
keyword
as
the
key
(as
in
{
"@type":
...
}
)
will
be
ignored
when
being
processed.
The
JSON-LD
Algorithms
and
API
specification
[
JSON-LD-API
]
defines
a
method
for
expanding
a
JSON-LD
document.
Expansion
is
the
process
of
taking
a
JSON-LD
document
and
applying
a
@context
such
that
all
IRIs,
types,
and
values
are
expanded
so
that
the
@context
is
no
longer
necessary.
For example, assume the following JSON-LD input document:
{ "@context": { "name": "http://xmlns.com/foaf/0.1/name", "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } }, "name": "Manu Sporny", "homepage": "http://manu.sporny.org/" }
Running the JSON-LD Expansion algorithm against the JSON-LD input document provided above would result in the following output:
[ { "http://xmlns.com/foaf/0.1/name": [ { "@value": "Manu Sporny" } ], "http://xmlns.com/foaf/0.1/homepage": [ { "@id": "http://manu.sporny.org/" } ] } ]
Expanded
document
form
is
useful
when
an
application
has
to
process
input
data
in
a
deterministic
form.
It
has
been
optimized
to
ensure
that
the
code
that
developers
have
to
write
is
minimized
compared
to
the
code
that
would
have
to
be
written
to
operate
on
6.15
6.16
Compact
Document
Form
.
The JSON-LD Algorithms and API specification [ JSON-LD-API ] defines a method for compacting a JSON-LD document. Compaction is the process of taking a JSON-LD document and applying a context such that a very compact form of the document is generated. At times, a JSON-LD document may be received that is not in its most compact form. The JSON-LD Algorithms, via an API, provides a way to compact a JSON-LD document.
For example, assume the following JSON-LD input document:
[ { "http://xmlns.com/foaf/0.1/name": [ "Manu Sporny" ], "http://xmlns.com/foaf/0.1/homepage": [ { "@id": "http://manu.sporny.org/" } ] } ]
Additionally, assume the following developer-supplied JSON-LD context:
{ "@context": { "name": "http://xmlns.com/foaf/0.1/name", "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } } }
Running the JSON-LD Compaction algorithm given the context supplied above against the JSON-LD input document provided above would result in the following output:
{ "@context": { "name": "http://xmlns.com/foaf/0.1/name", "homepage": { "@id": "http://xmlns.com/foaf/0.1/homepage", "@type": "@id" } }, "name": "Manu Sporny", "homepage": "http://manu.sporny.org/" }
The
compaction
algorithm
enables
a
developer
to
map
any
document
into
an
application-specific
compacted
form.
The
process
consists
of
expanding
the
document
(see
6.14
6.15
Expanded
Document
Form
)
and
then
using
a
developer-supplied
context
to
compact
the
expanded
document.
While
the
context
provided
above
mapped
http://xmlns.com/foaf/0.1/name
to
name
,
it
could
have
also
mapped
it
to
any
arbitrary
term
provided
by
the
developer.
This
powerful
mechanism
allows
the
developer
to
re-shape
the
incoming
JSON
data
into
a
format
that
is
optimized
for
their
application.
Databases are typically used to make access to data more efficient. Developers often extend this sort of functionality into their application data to deliver similar performance gains. Often this data does not have any meaning from a Linked Data standpoint, but is still useful for an application.
JSON-LD
introduces
the
notion
of
index
maps
that
can
be
used
to
structure
data
into
a
form
that
is
more
efficient
to
access.
The
data
indexing
feature
allows
an
author
to
structure
data
using
a
simpley
key-value
map
where
the
keys
do
not
map
to
IRIs
.
This
enables
direct
access
to
data
instead
of
having
to
scan
an
array
in
search
of
a
specific
item.
In
JSON-LD
such
data
can
be
specified
by
associating
the
@index
keyword
with
a
@container
declaration
in
the
context:
{ "@context": { "schema": "http://schema.org/", "name": "schema:name", "body": "schema:articleBody", "words": "schema:wordCount", "post": { "@id": "schema:blogPost", "@container": "@index" } }, "@id": "http://example.com/", "@type": "schema:Blog", "name": "World Financial News", "post": { "en": { "@id": "http://example.com/posts/1/en", "body": "World commodities were up today with heavy trading of crude oil...", "words": 1539 }, "de": { "@id": "http://example.com/posts/1/de", "body": "Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl...", "words": 1204 } } }
In
the
example
above,
the
blogPost
term
has
been
marked
as
an
index
map
.
The
en
,
de
,
and
ja
keys
will
be
ignored
semantically,
but
preserved
syntactically,
by
the
JSON-LD
Processor.
This
allows
a
developer
to
access
the
German
version
of
the
blogPost
using
the
following
code
snippet:
obj.blogPost.de
.
The
interpretation
of
the
data
above
is
expressed
in
the
table
below.
Note
how
the
index
keys
do
not
appear
in
the
Linked
Data
below,
but
would
continue
to
exist
if
the
document
were
compacted
or
expanded
(see
6.15
6.16
Compact
Document
Form
and
6.14
6.15
Expanded
Document
Form
)
using
a
JSON-LD
processor:
Subject | Property | Value |
---|---|---|
http://example.com/ | http://www.w3.org/1999/02/22-rdf-syntax-ns#type | http://schema.org/Blog |
http://example.com/ | http://schema.org/name | World Financial News |
http://example.com/ | http://schema.org/blogPost | http://example.com/posts/1/en |
http://example.com/ | http://schema.org/blogPost | http://example.com/posts/1/de |
http://example.com/posts/1/en | http://schema.org/articleBody | World commodities were up today with heavy trading of crude oil... |
http://example.com/posts/1/en | http://schema.org/wordCount | 1539 |
http://example.com/posts/1/de | http://schema.org/articleBody | Die Werte an Warenbörsen stiegen im Sog eines starken Handels von Rohöl... |
http://example.com/posts/1/de | http://schema.org/wordCount | 1204 |
JSON-LD is a serialization format for Linked Data based on JSON. It is therefore important to distinguish between the syntax, which is defined by JSON in [ RFC4627 ], and JSON-LD's data model which is defined as follows:
_:
.
In contrast to the RDF data model as defined in [ RDF-CONCEPTS ], JSON-LD allows blank nodes as property labels and graph names. This feature is controversial in the RDF WG and may be removed in the future.
JSON-LD documents may contain data that cannot be represented by the data model defined above. Unless otherwise specified, such data is ignored when a JSON-LD document is being processed. This means, e.g., that properties which are not mapped to an IRI or blank node will be ignored.
Figure 1: An illustration of JSON-LD's data model.
This appendix restates the syntactic conventions described in the previous sections more formally.
The
JSON-LD
context
allows
keywords
6.13
6.14
Aliasing
Keywords
).
Whenever
a
keyword
is
discussed
in
this
grammar,
the
statements
also
apply
to
an
alias
for
that
keyword
.
For
example,
if
the
active
context
defines
the
term
id
as
an
alias
for
@id
,
that
alias
may
be
legitimately
used
as
a
substitution
for
@id
.
Note
that
keyword
aliases
are
not
expanded
during
context
processing.
A JSON-LD document must be a valid JSON document as described in [ RFC4627 ].
A JSON-LD document must be a single node object or a JSON array containing a set of one or more node objects .
A node object represents zero or more properties of a node in the JSON-LD graph serialized by the JSON-LD document . A JSON object is a node object if it exists outside of a JSON-LD context and:
@value
,
@list
,
or
@set
keywords,
and
@graph
and
@context
.
The properties of a node in a JSON-LD graph may be spread among different node objects within a document. When that happens, the keys of the different node objects are merged to create the properties of the resulting node .
A node object must be a JSON object . All keys which are not IRIs , compact IRIs , terms valid in the active context , or one of the following keywords must be ignored when processed:
@context
,
@graph
,
@id
,
@type
,
or
@index
If
the
node
object
contains
the
@context
key,
its
value
must
be
one
of
the
following:
If
the
node
object
contains
the
@id
key,
its
value
must
be
an
absolute
IRI
,
a
relative
IRI
,
or
a
compact
IRI
(including
blank
node
identifiers
).
See
5.3
Node
Identifiers
,
6.1
Compact
IRIs
,
and
6.12
6.13
Identifying
Blank
Nodes
for
further
discussion
on
@id
values.
If
the
node
object
contains
the
@type
key,
its
value
must
be
either
an
absolute
IRI
,
a
relative
IRI
,
a
compact
IRI
(including
blank
node
identifiers
),
a
term
defined
in
the
active
context
expanding
into
an
absolute
IRI
,
or
an
array
of
any
of
these.
See
5.4
Specifying
the
Type
for
further
discussion
on
@type
values.
If
the
node
object
contains
the
@graph
key,
its
value
must
be
a
node
object
or
an
array
of
zero
or
more
node
objects
.
If
the
node
object
contains
an
@id
keyword,
its
value
is
used
as
the
label
of
a
named
graph.
See
6.11
6.12
Named
Graphs
for
further
discussion
on
@graph
values.
As
a
special
case,
if
a
JSON
object
contains
no
keys
other
than
@graph
and
@context
,
and
the
JSON
object
is
the
root
of
the
JSON-LD
document,
the
JSON
object
is
not
treated
as
a
node
object
;
this
is
used
as
a
way
of
defining
node
definitions
that
may
not
form
a
connected
graph.
This
allows
a
context
to
be
defined
which
is
shared
by
all
of
the
constituent
node
objects
.
If
the
node
object
contains
the
@index
key,
its
value
must
be
a
string
.
See
section
6.16
6.17
Data
Indexing
for
further
discussion
on
@index
values.
Keys in a node object that are not keywords must expand to an absolute IRI using the active context . The values associated with these keys must be one of the following:
A term is a short-hand string that expands to an IRI or a blank node identifier .
A term must not equal any of the JSON-LD keywords .
To
avoid
forward-compatibility
issues,
a
term
should
not
start
with
an
@
character
as
future
versions
of
JSON-LD
may
introduce
additional
keywords
.
Furthermore,
the
use
of
empty
terms
(
""
)
is
discouraged
as
not
all
programming
languages
are
able
to
handle
empty
property
names.
See 5.1 The Context and 5.2 IRIs for further discussion on mapping terms to IRIs .
A
language
map
is
used
to
associate
a
language
with
a
value
in
a
way
that
allows
easy
programmatic
access.
A
language
map
may
be
used
as
a
term
value
within
a
node
object
if
the
term
is
defined
with
@container
set
to
@language
.
The
keys
of
a
language
map
must
be
lowercase
[
BCP47
]
strings
with
an
associated
value
that
is
any
of
the
following
types:
An
index
map
allows
keys
that
have
no
semantic
meaning,
but
should
be
preserved
regardless,
to
be
used
in
JSON-LD
documents.
An
index
map
may
be
used
as
a
term
value
within
a
node
object
if
the
term
is
defined
with
@container
set
to
@index
.
The
values
of
the
members
of
an
index
map
must
be
one
of
the
following
types:
See
6.16
6.17
Data
Indexing
for
further
information
on
this
topic.
An expanded value is used to explicitly associate a type or a language with a value to create a typed value or a language-tagged string .
An
expanded
value
must
be
a
JSON
object
containing
the
@value
key.
It
may
also
contain
a
@type
,
a
@language
,
or
an
@index
key
but
must
not
contain
both
a
@type
and
a
@language
key
at
the
same
time.
An
expanded
value
must
not
contain
keys
other
than
@value
,
@type
,
@language
,
and
@index
.
An
expanded
value
that
contains
a
@type
key
is
called
an
expanded
typed
value
.
An
expanded
value
that
contains
a
@language
key
is
called
an
expanded
language-tagged
string
.
The
value
associated
with
the
@value
key
must
be
either
a
string
,
number
,
true
,
false
or
null
.
The
value
associated
with
the
@type
key
must
be
a
term
,
a
compact
IRI
,
an
absolute
IRI
,
a
relative
IRI
,
or
null
.
The
value
associated
with
the
@language
key
must
have
the
lexical
form
described
in
[
BCP47
],
or
be
null
.
The
value
associated
with
the
@index
key
must
be
a
string
.
See 6.2 Typed Values and for more information on expanded values .
A
list
represents
an
ordered
set
of
values.
A
set
represents
an
unordered
set
of
values.
Unless
otherwise
specified,
arrays
are
unordered
in
JSON-LD.
As
such,
the
@set
keyword,
when
used
in
the
body
of
a
JSON-LD
document,
represents
just
syntactic
sugar
which
is
optimized
away
when
processing
the
document.
However,
it
is
very
helpful
when
used
within
the
context
of
a
document.
Values
of
terms
associated
with
a
@set
or
@list
container
will
always
be
represented
in
the
form
of
an
array
when
a
document
is
processed
-
even
if
there
is
just
a
single
value
that
would
otherwise
be
optimized
to
a
non-array
form
in
compact
document
form
.
This
simplifies
post-processing
of
the
data
as
the
data
is
always
in
array
form.
A
list
must
be
a
JSON
object
that
contains
no
other
keys
than
@list
,
@context
,
and
@index
.
A
set
must
be
a
JSON
object
that
that
contains
no
other
keys
than
@set
,
@context
,
and
@index
.
Please
note
that
the
@index
key
will
be
ignored,
and
thus
be
dropped,
when
being
processed.
In
both
cases,
the
value
associated
with
the
keys
@list
and
@set
must
be
an
array
of
any
of
the
following:
See
6.9
6.10
Sets
and
Lists
for
further
discussion
on
List
and
Set
Values.
A context definition defines a local context in a node object .
A
context
definition
must
be
a
JSON
object
containing
one
or
more
key-value
pairs.
Keys
must
either
be
terms
or
@language
or
@vocab
keywords
.
If
the
context
definition
has
a
@language
key,
its
value
must
have
the
lexical
form
described
in
[
BCP47
]
or
be
null
.
If
the
context
definition
has
a
@vocab
key,
its
value
must
have
the
lexical
form
of
absolute
IRI
or
be
null
.
Term values must be either a string , null , or an expanded term definition .
An expanded term definition is used to describe the mapping between a term and its expanded identifier, as well as other properties of the value associated with the term when it is used as key in a node object .
An
expanded
term
definition
should
be
a
JSON
object
composed
of
zero
or
more
keys
from
@id
,
@type
,
@language
or
@container
.
An
expanded
term
definition
should
not
contain
any
other
keys.
If
the
term
definition
is
not
null
,
a
compact
IRI
,
or
an
absolute
IRI
and
the
active
context
does
not
have
an
@vocab
mapping,
the
expanded
term
definition
must
include
the
@id
key.
If
the
expanded
term
definition
contains
the
@id
keyword
,
its
value
must
be
null
,
an
absolute
IRI
,
a
blank
node
identifier
,
a
compact
IRI
,
a
term
defined
in
the
defining
context
definition
or
the
active
context
,
or
an
array
composed
of
any
of
the
previous
allowed
values
except
null
.
If
the
expanded
term
definition
contains
the
@type
keyword
,
its
value
must
be
an
absolute
IRI
,
a
compact
IRI
,
a
term
defined
in
the
defining
context
definition
or
the
active
context
,
null
,
or
the
one
of
the
keywords
@id
keyword
.
or
@vocab
.
If
the
expanded
term
definition
contains
the
@language
keyword
,
its
value
must
have
the
lexical
form
described
in
[
BCP47
]
or
be
null
.
If
the
expanded
term
definition
contains
the
@container
keyword
,
its
value
must
be
either
@list
,
@set
,
@language
,
@index
,
or
be
null
.
If
the
value
is
@language
,
when
the
term
is
used
outside
of
the
@context
,
the
associated
value
must
be
a
language
map
.
If
the
value
is
@index
,
when
the
term
is
used
outside
of
the
@context
,
the
associated
value
must
be
an
index
map
.
Terms must not be used in a circular manner. That is, the definition of a term cannot depend on the definition of another term if that other term also depends on the first term.
See 5.1 The Context for further discussion on contexts.
The RDF data model, as outlined in [ RDF-CONCEPTS ], is an abstract syntax for representing a directed graph of information. It is a subset of JSON-LD's data model with a few additional constraints. The differences between the two data models are:
Summarized these differences mean that JSON-LD is capable of serializing any RDF graph or dataset and most, but not all, JSON-LD documents can be transformed to RDF. A complete description of the algorithms to convert from RDF to JSON-LD and from JSON-LD to RDF is included in the JSON-LD Algorithms and API specification [ JSON-LD-API ].
Even though JSON-LD serializes RDF datasets, it can also be used as a RDF graph source. In that case, a consumer must only use the default graph and ignore all named graphs. This allows servers to expose data in, e.g., both Turtle and JSON-LD using content negotiation.
Publishers supporting both dataset and graph syntaxes have to ensure that the primary data is stored in the default graph to enable consumers that do not support datasets to process the information.
This section is non-normative.
The JSON-LD markup examples below demonstrate how JSON-LD can be used to express semantic data marked up in other linked data formats such as Turtle, RDFa, Microformats, and Microdata. These sections are merely provided as evidence that JSON-LD is very flexible in what it can express across different Linked Data approaches.
This section is non-normative.
The following are examples of converting RDF expressed in Turtle [ TURTLE-TR ] into JSON-LD.
This section is non-normative.
The
JSON-LD
context
has
direct
equivalents
for
the
Turtle
@prefix
declaration:
@prefix foaf: <http://xmlns.com/foaf/0.1/> . <http://manu.sporny.org/i/public> a foaf:Person; foaf:name "Manu Sporny"; foaf:homepage <http://manu.sporny.org/> .
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/" }, "@id": "http://manu.sporny.org/i/public", "@type": "foaf:Person", "foaf:name": "Manu Sporny", "foaf:homepage": { "@id": "http://manu.sporny.org/" } }
JSON-LD
has
no
equivalent
for
the
Turtle
@base
declaration,
but
can
use
a
prefix
such
as
base
to
encode
the
information
in
the
document.
Both Turtle and JSON-LD allow embedding, although Turtle only allows embedding of blank nodes .
@prefix foaf: <http://xmlns.com/foaf/0.1/> . <http://manu.sporny.org/i/public> a foaf:Person; foaf:name "Manu Sporny"; foaf:knows [ a foaf:Person; foaf:name "Gregg Kellogg" ] .
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/" }, "@id": "http://manu.sporny.org/i/public", "@type": "foaf:Person", "foaf:name": "Manu Sporny", "foaf:knows": { "@type": "foaf:Person", "foaf:name": "Gregg Kellogg" } }
Both JSON-LD and Turtle can represent sequential lists of values.
@prefix foaf: <http://xmlns.com/foaf/0.1/> . <http://example.org/people#joebob> a foaf:Person; foaf:name "Joe Bob"; foaf:nick ( "joe" "bob" "jaybee" ) .
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/" }, "@id": "http://example.org/people#joebob", "@type": "foaf:Person", "foaf:name": "Joe Bob", "foaf:nick": { "@list": [ "joe", "bob", "jaybee" ] } }
The following example describes three people with their respective names and homepages in RDFa [ RDFA-CORE ].
<div prefix="foaf: http://xmlns.com/foaf/0.1/"> <ul> <li typeof="foaf:Person"> <a rel="foaf:homepage" href="http://example.com/bob/" property="foaf:name">Bob</a> </li> <li typeof="foaf:Person"> <a rel="foaf:homepage" href="http://example.com/eve/" property="foaf:name">Eve</a> </li> <li typeof="foaf:Person"> <a rel="foaf:homepage" href="http://example.com/manu/" property="foaf:name">Manu</a> </li> </ul> </div>
An example JSON-LD implementation using a single context is described below.
{ "@context": { "foaf": "http://xmlns.com/foaf/0.1/" }, "@graph": [ { "@type": "foaf:Person", "foaf:homepage": "http://example.com/bob/", "foaf:name": "Bob" }, { "@type": "foaf:Person", "foaf:homepage": "http://example.com/eve/", "foaf:name": "Eve" }, { "@type": "foaf:Person", "foaf:homepage": "http://example.com/manu/", "foaf:name": "Manu" } ] }
The
following
example
uses
a
simple
Microformats
hCard
([
example
to
express
how
Microformats
[
MICROFORMATS
])
example
to
express
how
the
Microformat
is
]
are
represented
in
JSON-LD.
<div class="vcard"> <a class="url fn" href="http://tantek.com/">Tantek Çelik</a> </div>
The
representation
of
the
hCard
expresses
the
Microformat
terms
in
the
context
and
uses
them
directly
for
the
url
and
fn
properties.
Also
note
that
the
Microformat
to
JSON-LD
processor
has
generated
the
proper
URL
type
for
http://tantek.com/
.
{ "@context": { "vcard": "http://microformats.org/profile/hcard#vcard", "url": { "@id": "http://microformats.org/profile/hcard#url", "@type": "@id" }, "fn": "http://microformats.org/profile/hcard#fn" }, "@type": "vcard", "url": "http://tantek.com/", "fn": "Tantek Çelik" }
The
HTML
Microdata
[
MICRODATA
]
example
below
expresses
book
information
as
a
microdata
Microdata
Work
item.
<dl itemscope itemtype="http://purl.org/vocab/frbr/core#Work" itemid="http://purl.oreilly.com/works/45U8QJGZSQKDH8N"> <dt>Title</dt> <dd><cite itemprop="http://purl.org/dc/terms/title">Just a Geek</cite></dd> <dt>By</dt> <dd><span itemprop="http://purl.org/dc/terms/creator">Wil Wheaton</span></dd> <dt>Format</dt> <dd itemprop="http://purl.org/vocab/frbr/core#realization" itemscope itemtype="http://purl.org/vocab/frbr/core#Expression" itemid="http://purl.oreilly.com/products/9780596007683.BOOK"> <link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-types/BOOK"> Print </dd> <dd itemprop="http://purl.org/vocab/frbr/core#realization" itemscope itemtype="http://purl.org/vocab/frbr/core#Expression" itemid="http://purl.oreilly.com/products/9780596802189.EBOOK"> <link itemprop="http://purl.org/dc/terms/type" href="http://purl.oreilly.com/product-types/EBOOK"> Ebook </dd> </dl>
Note that the JSON-LD representation of the Microdata information stays true to the desires of the Microdata community to avoid contexts and instead refer to items by their full IRI .
[ { "@id": "http://purl.oreilly.com/works/45U8QJGZSQKDH8N", "@type": "http://purl.org/vocab/frbr/core#Work", "http://purl.org/dc/terms/title": "Just a Geek", "http://purl.org/dc/terms/creator": "Whil Wheaton", "http://purl.org/vocab/frbr/core#realization": [ "http://purl.oreilly.com/products/9780596007683.BOOK", "http://purl.oreilly.com/products/9780596802189.EBOOK" ] }, { "@id": "http://purl.oreilly.com/products/9780596007683.BOOK", "@type": "http://purl.org/vocab/frbr/core#Expression", "http://purl.org/dc/terms/type": "http://purl.oreilly.com/product-types/BOOK" }, { "@id": "http://purl.oreilly.com/products/9780596802189.EBOOK", "@type": "http://purl.org/vocab/frbr/core#Expression", "http://purl.org/dc/terms/type": "http://purl.oreilly.com/product-types/EBOOK" } ]
This section is non-normative.
This section is included merely for standards community review and will be submitted to the Internet Engineering Steering Group if this specification becomes a W3C Recommendation.
profile
A
whitespace-separated
list
of
IRIs
identifying
specific
constraints
or
conventions
that
apply
to
a
JSON-LD
document.
A
profile
must
not
change
the
semantics
of
the
resource
representation
when
processed
without
profile
knowledge,
so
that
clients
both
with
and
without
knowledge
of
a
profiled
resource
can
safely
use
the
same
representation.
The
profile
parameter
may
also
be
used
by
clients
to
express
their
preferences
in
the
content
negotiation
process.
It
is
recommended
that
profile
IRIs
are
dereferenceable
and
provide
useful
documentation
at
that
IRI
.
For
more
information
and
background
please
refer
to
[
PROFILE-LINK
].
This
specification
defines
four
values
for
the
profile
parameter.
To
request
or
specify
Expanded
JSON-LD
document
form,
the
IRI
http://www.w3.org/ns/json-ld#expanded
URL
should
be
used.
To
request
or
specify
Expanded,
Flattened
JSON-LD
document
form,
the
IRI
http://www.w3.org/ns/json-ld#expanded-flattened
URL
should
be
used.
To
request
or
specify
Compacted
JSON-LD
document
form,
the
IRI
http://www.w3.org/ns/json-ld#compacted
URL
should
be
used.
To
request
or
specify
Compacted,
Flattened
JSON-LD
document
form,
the
IRI
http://www.w3.org/ns/json-ld#compacted-flattened
URL
should
be
used.
Please
note
that,
according
[
HTTP11
],
the
value
of
the
profile
parameter
has
to
be
enclosed
in
quotes
(
"
)
because
it
contains
special
characters
and,
in
some
cases,
whitespace.
eval()
Fragment identifiers used with application/ld+json resources may identify a node in a JSON-LD graph expressed in the resource. This idiom, which is also used in RDF [ RDF-CONCEPTS ], gives a simple way to "mint" new, document-local IRIs to label nodes and therefore contributes considerably to the expressive power of JSON-LD.
This section is non-normative.
The authors would like to extend a deep appreciation and the most sincere thanks to Mark Birbeck, who contributed foundational concepts to JSON-LD via his work on RDFj. JSON-LD uses a number of core concepts introduced in RDFj, such as the context as a mechanism to provide an environment for interpreting JSON data. Mark had also been very involved in the work on RDFa as well. RDFj built upon that work. JSON-LD exists because of the work and ideas he started nearly a decade ago in 2004.
A large amount of thanks goes out to the JSON-LD Community Group participants who worked through many of the technical issues on the mailing list and the weekly telecons - of special mention are François Daoust, Stéphane Corlosquet, Lin Clark, and Zdenko 'Denny' Vrandečić.
The work of David I. Lehn and Mike Johnson are appreciated for reviewing, and performing several early implementations of the specification. Thanks also to Ian Davis for this work on RDF/JSON.
Thanks
to
the
following
individuals,
in
order
of
their
first
name,
for
their
input
on
the
specification:
Adrian
Walker,
Alexandre
Passant,
Andy
Seaborne,
Ben
Adida,
Blaine
Cook,
Bradley
Allen,
Brian
Peterson,
Bryan
Thompson,
Conal
Tuohy,
Dan
Brickley,
Danny
Ayers,
Daniel
Leja,
Dave
Reynolds,
David
I.
Lehn,
David
Wood,
Dean
Landolt,
Ed
Summers,
elf
Pavlik,
Eric
Prud'hommeaux,
Erik
Wilde,
Fabian
Christ,
Jon
A.
Frost,
Gavin
Carothers,
Glenn
McDonald,
Guus
Schreiber,
Henri
Bergius,
Jose
María
Alvarez
Rodríguez,
Ivan
Herman,
Jack
Moffitt,
Josh
Mandel,
KANZAKI
Masahide,
Kingsley
Idehen,
Kuno
Woudt,
Larry
Garfield,
Mark
Baker,
Mark
MacGillivray,
Marko
Rodriguez,
Melvin
Carvalho,
Nathan
Rixham,
Olivier
Grisel,
Paolo
Ciccarese,
Pat
Hayes,
Patrick
Logan,
Paul
Kuykendall,
Pelle
Braendgaard,
Peter
Williams,
Pierre-Antoine
Champin,
Richard
Cyganiak,
Roy
T.
Fielding,
Sandro
Hawke,
Srecko
Joksimovic,
Stephane
Fellah,
Steve
Harris,
Ted
Thibodeau
Jr.,
Thomas
Steiner,
Tim
Bray,
Tom
Morris,
Tristan
King,
Sergio
Fernández,
Werner
Wilms,
and
William
Waites
Waites.